Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836144

RESUMEN

The responses of plants to stress factors are extremely elaborate [...].

2.
Biology (Basel) ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37508359

RESUMEN

Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological processes in plants, including responses to biotic and abiotic stresses. Changes in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging pathways in plant cells and highlights the role of NO in post-translational modifications of proteins (S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental conditions. Particular attention was paid to the interactions of NO with other signaling molecules: reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic acid. In addition, potential common patterns of NO-dependent defense responses against attack and feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were characterized. Our review definitely highlights the need for further research on the involvement of NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.

3.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499563

RESUMEN

In response to environmental stress, plants activate complex signalling, including being dependent on reactive oxygen-nitrogen-sulphur species. One of the key abiotic stresses is drought. As a result of drought, changes in the level of hydration of the plant occur, which obviously entails various metabolic alternations. The primary aim of this study was to determine the relationship between the response of barley to drought and the intensity of stress, therefore investigations were performed under various levels of water saturation deficit (WSD) in leaves at 15%, 30%, and 50%. In barley subjected to drought, most significant changes occurred under a slight dehydration level at 15%. It was observed that the gene expression of 9-cis-epoxycarotenoid dioxygenases, enzymes involved in ABA biosynthesis, increased significantly, and led to a higher concentration of ABA. This was most likely the result of an increase in the gene expression and enzyme activity of L-cysteine desulfhydrase, which is responsible for H2S synthesis. Our results suggest that the differential water deficit in leaves underlies the activation of an appropriate defence, with ABA metabolism at the centre of these processes. Furthermore, at 15% WSD, a dominant contribution of H2O2-dependent signalling was noted, but at 30% and 50% WSD, significant NO-dependent signalling occurred.


Asunto(s)
Hordeum , Hordeum/metabolismo , Ácido Abscísico/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Estrés Fisiológico/genética
4.
Plants (Basel) ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36235410

RESUMEN

Environmental changes are inevitable with time, but their intensification and diversification, occurring in the last several decades due to the combination of both natural and human-made causes, are really a matter of great apprehension. As a consequence, plants are exposed to a variety of abiotic stressors that contribute to their morpho-physiological, biochemical, and molecular alterations, which affects plant growth and development as well as the quality and productivity of crops. Thus, novel strategies are still being developed to meet the challenges of the modern world related to climate changes and natural ecosystem degradation. Innovative methods that have recently received special attention include eco-friendly, easily available, inexpensive, and, very often, plant-based methods. However, such approaches require better cognition and understanding of plant adaptations and acclimation mechanisms in response to adverse conditions. In this succinct review, we have highlighted defense mechanisms against external stimuli (mainly exposure to elevated levels of metal elements) which can be activated through permanent microevolutionary changes in metal-tolerant species or through exogenously applied priming agents that may ensure plant acclimation and thereby elevated stress resistance.

5.
Plants (Basel) ; 11(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35448737

RESUMEN

Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.

6.
Cells ; 11(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456031

RESUMEN

Abscisic acid (ABA) is a phytohormone that plays a key role in regulating several developmental processes as well as in response to stressful conditions such as drought. Activation of the ABA signaling cascade allows the induction of an appropriate physiological response. The basic components of the ABA signaling pathway have been recognized and characterized in recent years. Pyrabactin resistance, pyrabactin resistance-like, and the regulatory component of ABA receptors (PYR/PYL/RCAR) are the major components responsible for the regulation of the ABA signaling pathway. Here, we review recent findings concerning the PYR/PYL/RCAR receptor structure, function, and interaction with other components of the ABA signaling pathway as well as the termination mechanism of ABA signals in plant cells. Since ABA is one of the basic elements related to abiotic stress, which is increasingly common in the era of climate changes, understanding the perception and transduction of the signal related to this phytohormone is of paramount importance in further increasing crop tolerance to various stress factors.


Asunto(s)
Ácido Abscísico , Reguladores del Crecimiento de las Plantas , Ácido Abscísico/metabolismo , Proteínas Portadoras , Sequías , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo
7.
Plant Soil ; 456(1-2): 189-206, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32952222

RESUMEN

Aims: This research aimed to establish how Hordeum vulgare responds to abiotic and biotic stress affecting in tandem. Methods: Plants were inoculated with Heterodera filipjevi and treated with cadmium (Cd) concentration (5 µM) that can occur in the cultivated soil. To verify the hypothesis about participation of increased antioxidative defence in H. vulgare under stress, biochemical and microscopic methods were implemented. Results: The amount of superoxide anions and hydrogen peroxide was diminished in plants that were both nematode-inoculated and cadmium-treated. Superoxide anions were rendered harmless by increased activity of superoxide dismutase, and H2O2 was scavenged via Foyer-Halliwell-Asada pathway. The unique enhanced antioxidant capacity of double stressed plants was also linked with the accumulation of S-nitrosoglutathione as nitrosoglutathione reductase activity was inhibited. Furthermore, stimulated activity of arginase in these plants could promote polyamine synthesis and indirectly enhance non-enzymatic antioxidant mechanism. Results indicate that different antioxidants operating together significantly restricted oxidation of lipids and proteins, thus the integrity of cell membranes and protein functions were maintained. Conclusions: The ROS deactivation machinery in barley leaves showed an unusual response during stress induced by H. filipjevi infection and cadmium treatment. Plants could induce a multi-component model of stress response, to detoxify Cd ions and efficiently repair stress damage.

8.
Plant Cell Rep ; 39(12): 1719-1741, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32955612

RESUMEN

KEY MESSAGE: Defence responses of cyst nematode and/or wheat curl mite infested barley engage the altered reactive oxygen species production, antioxidant machinery, carbon dioxide assimilation and photosynthesis efficiency. The primary aim of this study was to determine how barley responds to two pests infesting separately or at once; thus barley was inoculated with Heterodera filipjevi (Madzhidov) Stelter (cereal cyst nematode; CCN) and Aceria tosichella Keifer (wheat curl mite; WCM). To verify hypothesis about the involvement of redox metabolism and photosynthesis in barley defence responses, biochemical, photosynthesis efficiency and chlorophyll a fluorescence measurements as well as transmission electron microscopy were implemented. Inoculation with WCM (apart from or with CCN) brought about a significant suppression in the efficiency of electron transport outside photosystem II reaction centres. This limitation was an effect of diminished pool of rapidly reducing plastoquinone and decreased total electron carriers. Infestation with WCM (apart from or with CCN) also significantly restricted the electron transport on the photosystem I acceptor side, therefore produced reactive oxygen species oxidized lipids in cells of WCM and double infested plants and proteins in cells of WCM-infested plants. The level of hydrogen peroxide was significantly decreased in double infested plants because of glutathione-ascorbate cycle involvement. The inhibition of nitrosoglutathione reductase promoted the accumulation of S-nitrosoglutathione increasing antioxidant capacity in cells of double infested plants. Moreover, enhanced arginase activity in WCM-infested plants could stimulate synthesis of polyamines participating in plant antioxidant response. Infestation with WCM (apart from or with CCN) significantly reduced the efficiency of carbon dioxide assimilation by barley leaves, whereas infection only with CCN expanded photosynthesis efficiency. These were accompanied with the ultrastructural changes in chloroplasts during CCN and WCM infestation.


Asunto(s)
Hordeum/parasitología , Interacciones Huésped-Parásitos/fisiología , Ácaros/patogenicidad , Hojas de la Planta/metabolismo , Tylenchoidea/patogenicidad , Animales , Cloroplastos/parasitología , Cloroplastos/ultraestructura , Enzimas/metabolismo , Hordeum/fisiología , Fenoles/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/parasitología , Proteínas de Plantas/metabolismo , Carbonilación Proteica , Especies Reactivas de Oxígeno/metabolismo
9.
Antioxidants (Basel) ; 9(9)2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32859113

RESUMEN

Reactive nitrogen species (RNS) are redox molecules important for plant defense against pathogens. The aim of the study was to determine whether the infection by the beet cyst nematode Heterodera schachtii disrupts RNS balance in Arabidopsis thaliana roots. For this purpose, measurements of nitric oxide (NO), peroxynitrite (ONOO-), protein S-nitrosylation and nitration, and nitrosoglutathione reductase (GSNOR) in A. thaliana roots from 1 day to 15 days post-inoculation (dpi) were performed. The cyst nematode infection caused generation of NO and ONOO- in the infected roots. These changes were accompanied by an expansion of S-nitrosylated and nitrated proteins. The enzyme activity of GSNOR was decreased at 3 and 15 dpi and increased at 7 dpi in infected roots, whereas the GSNOR1 transcript level was enhanced over the entire examination period. The protein content of GSNOR was increased in infected roots at 3 dpi and 7 dpi, but at 15 dpi, did not differ between uninfected and infected roots. The protein of GSNOR was detected in plastids, mitochondria, cytoplasm, as well as endoplasmic reticulum and cytoplasmic membranes. We postulate that RNS metabolism plays an important role in plant defense against the beet cyst nematode and helps the fine-tuning of the infected plants to stress sparked by phytoparasitic nematodes.

10.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610484

RESUMEN

Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.


Asunto(s)
Ácido Abscísico/farmacología , Grano Comestible/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácido Abscísico/metabolismo , Sequías , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/efectos de los fármacos , Hordeum/genética , Hordeum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Salinidad , Tolerancia a la Sal/efectos de los fármacos , Estrés Fisiológico/fisiología , Triticum/genética , Triticum/metabolismo
11.
Plant Physiol Biochem ; 108: 507-518, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27596017

RESUMEN

A loss of dehydration tolerance in wheat seedlings on the fifth day following imbibition is associated with a disturbance in cellular redox homeostasis, as documented by a shift of the reduced/oxidized glutathione ratio to a more oxidized state and a significant increase in the ratio of protein thiols to the total thiol group content. Therefore, the identification and characterization of redox-sensitive proteins are important steps toward understanding the molecular mechanisms of the loss of dehydration tolerance. In the present study, proteins that were differentially expressed between fully turgid (control), dehydrated tolerant (four-day-old) and dehydrated sensitive (six-day-old) wheat seedlings were analysed. Protein spots having at least a significant (p < 0.05) two-fold change in protein abundance were selected by Delta2D as differentially expressed, identified by MALDI-TOF and LC-MS/MS, and classified according to their function. The observed changes in the proteomic patterns of the differentially S-nitrosylated and S-glutathionylated proteins were highly specific in dehydration-tolerant and -sensitive wheat seedlings. The metabolic function of these proteins indicates that dehydration tolerance is mainly related to nucleic acids, protein metabolism, and energy metabolism. It has been proven that leaf-specific thionins BTH6 and DB4, chloroplastic 50S ribosomal protein L16, phospholipase A1-II delta, and chloroplastic thioredoxin M2 are both S-nitrosylated and S-glutathionylated upon water deficiency. Our results revealed the existence of interplay between S-nitrosylation and S-glutathionylation, two redox-regulated protein posttranslational modifications that could enhance plant defence mechanisms and/or facilitate the acclimation of plants to unfavourable environmental conditions.


Asunto(s)
Proteínas de Plantas/metabolismo , Plantones/metabolismo , Triticum/metabolismo , Aclimatación , Cloroplastos/metabolismo , Deshidratación/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Plantones/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...